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ABSTRACT 

Evolutionary computation can increase the speed and accuracy of pattern recognition in multispectral images, for 
example, in automatic target tracking. We have developed two classes of evolutionary algorithms for exploiting 
multispectral imagery. The first method treats the clustering process. It determines a cluster of pixels around specified 
reference pixels so that the entire cluster is increasingly representative of the search object. An initial population (of 
clusters) evolves into populations of new clusters, with each cluster having an assigned fitness score. This population 
undergoes iterative mutation and selection. Mutation operators alter both the pixel cluster set cardinality and 
composition. Several stopping criteria can be applied to terminate the evolution. An advantage of this evolutionary 
cluster formulation is that the resulting cluster may have an arbitrary shape so that it most nearly fits the search pattern. 
The second algorithm class automates the selection of features (the center-wavelength and the bandwidth) for each 
population member. For each pixel in the image and for each population member, the Mahalanobis distance to the 
reference set is calculated and a decision is made whether or not this pixel belongs to a target. The sum of correct and 
false decisions defines a Receiver Operating Curve, which is used to measure the fitness of a population member. Based 
on this fitness, the algorithm decides which population members to use as parents for the next iteration.  
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1. INTRODUCTION 
This paper demonstrates two applications of evolutionary algorithms that improve speed and accuracy of the analysis of 
multispectral images. A parking lot serves as scenario; multispectral images taken under different environmental 
conditions, such as weather, time of day, viewing angles are analyzed. The objective of the experiments is to identify an 
object, or multiple objects, called template objects, in one multispectrally captured scene and to subsequently search for 
and identify, either in the same or in a different multispectral image other objects that are similar to the template 
object(s). 
 
The science (and art) of classifying multispectral and hyperspectral images has been developed and perfected over 
several decades. Its origin can often be traced to the analysis of space-based remote sensing. Early applications focused 
on identifying and specifying properties of the Earth’s surface, for such diverse problems as detection of ore deposits or 
assessing the quality of crops, such as corn. Landgrebe’s survey article “Hyperspectral Image Analysis” [1], even though 
published in 2002, has still much to offer today. Landgrebe was also instrumental in the development of the highly 
successful software “Multispec” [2] To conclude the appreciation of Landgrebe’s contribution to multispectral remote 
sensing, we refer to his outstanding textbook “Signal Theory in Multispectral Remote Sensing” [3] 
 
Readers interested in specific examples of multiband scene analysis for mineral exploration and other Earth resource 
applications are referred to MicroImages informative web page [4], “Introduction to hyperspectral imaging”. This site 
offers interesting results of NASA’s “Visible/Infrared Imaging Spectrometer (AVIRIS) for the Cuprite, Nevada mining 
area, and also contains a worthwhile summary of “Spectral Reflectance and Radiance”. 
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The innovative contribution of the current paper consists in the application of two computationally intelligent algorithms 
for simultaneously solving the clustering problem and the problem of finding efficient reduction of the number of 
features in multispectral images.    
 
Target identification and recognition have important real-world applications. For example, in counter-terrorist efforts, 
one might identify a car with a suspicious driver or load. One might later search for the same car (possibly with a 
changed license plate) in a different location. Other applications might include identification of shipping containers in a 
port of origin and later identifying the same containers in a destination port. 
 
The paper is organized as follows: Section 2 introduces multispectral images typical for the selected scenario. Technical 
details of the multispectral imaging system, the embedded processor and the associated software are described. Section 3 
explains the essential features of the evolutionary clustering algorithm and the evolutionary feature selection algorithm. 
In section 4 important properties of distance measures in general and of the “Zero mean differential area” algorithm and 
the Mahalanobis distance measure in particular are described. Details about the two evolutionary algorithms are 
summarized in section 5. Section 6 describes some interesting results obtained by applying the two evolutionary 
algorithms. The paper concludes with recommendations for further research in the fascinating field of multispectral 
image analysis. 
 

2. METHODOLOGY 
2.1 Sample images 

Figures 1 and 2 show two different views of a parking lot. The two figures are very similar, a noteworthy difference is 
the gray “calibration panel”, pointed out in figure 1 

 
Fig 1. RGB image FV1 (obtained from a multispectral image by a tristimulus transformation) 
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Fig 2. RGB image FV2. Same parking lot as shown in figure 1. This image is used to search for objects similar to the 

primary reference object shown in figure 1. 

2.2 Imaging System 

All the results described in this paper were obtained with a camera system manufactured and marketed as commercial 
off-the-shelf  equipment by the Surface Optics Corporation, San Diego (SOC). Salient features of the SOC-700 system 
are: 

Table 1. Specifications of the SOC-700 multispectral imaging system 

 

Spectral Band: 400 … 900 nm (0.4 … 0.9 microns) 

Number of Bands 120 Bands with 4 nm resolution 

Dynamic range  12 bits 

Exposure Time 10 … 10^7 microseconds 

Line Rate Up to 100 lines/second (120 bands) 

Pixels per Line 640 

Image size 640 x 640 x 120 x 2 bytes (~100 Mbytes) 

 

2.3 Embedded Processor 

Standard PCI interfaces connect camera and PC-board. Board performs radiometric calibration atmospheric correction 
and spectral correlation. A detailed description of the calibration procedure will appear in a forthcoming paper by James 
Jafolla.. Software can also perform tristimulus conversion of a multispectral image to an RGB image that can be 
displayed in real time to the operator for target designation and identification. 
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3. EVOLUTIONARY ALGORITHMS 
3.1 Separate algorithms developed by NSI and SOC 

The two evolutionary algorithms described in this paper (clustering and feature selection) were developed by the 
principal author of this paper. Independently, Dr. James Jafolla of SOC developed a genetic algorithm for an optimal 
selection of sequences of filtering operations. Jafolla’s genetic algorithm will be described in a forthcoming paper. 

3.2 Clustering algorithm 

Here, the problem was to find clusters of pixels that are spectrally similar. What we mean by “spectrally similar” is 
defined in more detail in section 4, “Distance measures”. Quickly identifying suitable clusters of pixels is particularly 
important in real-time target identification, where we can not expect to have highly trained (PhDs) operators. Ideally, the 
operator recognizes in an RGB display a potential target. He points the curser to a pixel in the target area (the template 
centroid pixel) and the evolutionary algorithm then autonomously searches the image for surrounding pixels whose 
spectral composition is, within a prescribed threshold, similar to the spectrum of the template centroid pixel. Successful 
target recognition critically depends on this clustering process because the cluster may be used as the “training” area for 
the pattern recognition algorithm(s). The more uniformly the spectral composition of the training area is defined, the 
easier it will be for the pattern recognition to find similar areas in either the same image or in some other, related image. 

3.3 Feature selection algorithm 

The SOC-700 can provide up to 120 different spectral reflectance values for each of the imaged pixels. It is reasonable to 
ask: Do we really need120 different wavelengths for each pixel? Experience has shown that reducing the number of 
features (wavelengths) in a pattern recognition problem not only reduces the computational effort to search for similar 
objects, but it may actually improve the recognition performance. This performance can be measured by the “Receiver 
Operating Characteristic” (ROC) curve applied to a particular operating problem. Representative ROC curves are given 
in section 5. 

4. DISTANCE MEASURES 
4.1 General properties of distance measures 

Analysis of multispectral images routinely requires an estimate of the similarity between two different spectra. The 
similarity must be expressed in a quantifiable form. Measured spectra are inherently noisy. Estimation of similarity 
requires comparing two or more noisy, multidimensional vectors. This comparison may be considered to be a filtering 
(or a correlation) process. Consider an a priory defined template vector vT, we now filter all the spectra of each pixel in 
the image against this template vector.  We tacitly assume that all vectors have the same number of components. 

If the correlation value between a target vector and the template vector exceeds a predefined value, we declare that the 
target pixel matches the template, else we declare no match. Noise of course affects this decision and it may cause one of 
the two types of erroneous classification: a) a missed detection or b) a false alarm (declaring a match if in reality the 
pixel does not match the properties of the template). 

Not only the noise (or more accurately, the signal-to-noise ratio) affects the ratio of missed detections to false alarms, 
but equally important the distance metric that is used to determine similarity. Many potentially useful distance measures 
between vectors are known and could be used. Some well known candidate distance measures include: 

- Euclidian distance 

- Bhattacharyya distance 

- Mahalanobis distance 

- Zero mean differential area  (ZMDA) 

The original objectives of the research reported in this paper were to explore various applications of evolutionary and 
genetic algorithms in multispectral image analysis. Early results however indicated  that different distance measures used 
for scoring the results obtained with different evolutionary algorithms influenced the fitness function (the quality by 
which the performance of different evolutionary algorithms were measured), as much, if not more, than the algorithms 
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per se. This dependency of the performance of recognition algorithms (in general, not only evolutionary algorithms) 
deserves to by studied in greater detail and more systematically. 

In the work reported in this paper, attention was focused on two distance measures: 

- Zero mean differential area 

- Mahalanobis distance 

These two distance measures will now be defined. 

4.2  Formula for ZMDA distance 

Let L(λn) n= 1 … N represent the spectrum of an arbitrary “target” pixel and F(λn) the composite spectrum of the primary 
reference area ( F for filter) then the ZMDA distance is defined as: 
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And similarly for the vector F. Note that a large distance between spectra means a low correlation (high dissimilarity) 
and vice versa. We sometimes, for convenience, define (1 – distance) as the ZMDA-correlation, that we often simply 
call the ZMDA distance.  
 
4.3 Procedure to calculate the Mahalanobis distance 

Euclidian, ZMDA and Bhattacharyya distance (and many other distance measures) require only the spectrum of the filter 
(λF(i), i = 1 … N) where N is the number of spectral components, and the spectrum of the target (λT(i), i = 1 … N). In 
contrast, to calculate the Mahalanobis distance, we need, besides the spectrum of the target, a composite spectrum of a 
“training area” and the covariance matrix of the spectra of the training area. Consider the training area to consist of M 
samples (NUM_SAMP), each sample having components λm(i), I = 1 …N, m = 1 … M, so that the sample space may be 
represented by an “observation” matrix with NUM_FREQS rows and NUM_SAMP columns. Ideally, pixels included in 
the set of training pixels should be most descriptive of the object we are training for.. Pixels that merely represent 
undesirable background reduce the discrimination power of the covariance matrix because the decrease the signal-to-
noise ratio of the training area. The elimination of background noise is a significant contribution of an evolutionary 
clustering algorithm. We normalize this matrix by subtracting the row-average from each element in the row (that is we 
subtract the mean value of all samples at a given frequency value); call this matrix ts. It’s covariance matrix is ts * ts

T, 
(superscript T indicates the transpose) which is now a NUM_FREQS by NUM_FREQS symmetrical matrix. At this 
point, another normalization may be performed by dividing each row by its main-diagonal element. 

The next step is to invert the covariance matrix, say covi = inv(cov). As long as we use sufficiently more observation 
points than we have frequency components, a simple Gauss-Jordan inversion usually works well, should the matrix be 
ill-conditioned, we recommend performing the inversion by a QR decomposition algorithm. Having obtained the 
inverted covariance matrix covi, the final step consists of calculating the Mahalanobis distance between each candidate 
pixel and the training area, which is: 

)(cov)(( 〉〈−××〉〈−= TT
T

FFd vvivvsqrtM  

Large values of Md indicate small correlation, we use some appropriately scaled value of (1 -Md.) calling it Mahalanobis 
correlation. 
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5. FEATURE REDUCTION ALGORITHM SPECIFICATIONS 
5.1 Justification for feature reduction 

Reducing the number of features for pattern recognition in multispectral images may be advantageous for a number of 
reasons: 

1 reduction of memory requirements for storing image 

2 reduction of processing time 

3 increase of recognition performance 

While the advantages listed under 1 and 2 are fairly obvious, there is no simple rule that correlates performance in 
pattern discrimination with the number of components in the feature vector. Whether or nor feature reduction enhances 
pattern recognition depends on the individual application, and on the intended use of the target recognition. The 
experiments performed in this research frequently indicated better performance with reduced features. Lack of resources 
did not allow a systematic study of this important problem; however, we do report here some cases where the reduction 
in feature resulted in improved recognition-performance. 

5.2 Objectives of the algorithm 

For a given recognition task with limited resources, find a set of center wavelengths and associated bandwidths that 
optimize a specified recognition fitness function. In a simple case, the fitness-function can be a weighted sum of missed 
detections and false alarms. The selected center-wavelengths do not have to be equidistantly spaced and the bandwidth 
allocated to the individual frequency bands do not have to be all the same. Constraints in equipment may often dictate 
number of wavelength bands and associated bandwidths. 

5.3 Specific requirements for the developed algorithm 

Use an SOC-700 multispectral image acquisition system: 

640 x 640 pixels with 12 bit resolution 

Calibrate to 640 x 640 floating point reflectance values 

Maximum spectral resolution: 120 wavelengths with 4 nm bandwidth 

Search Objects  primary object = painted arrow at x=603; y=442 in image FV1 

Number of pixels in primary search object: Given by the evolutionary clustering algorithm: 23 pixels 

5.4 Parameter definitions for the evolutionary algorithm: 

Population size: 10 

Mutation  Operators: 

- Add a population member 

- Delete a population member 

- Change number of center wavelengths 

- Change values of center wavelengths 

- Change individual wavelength at each center wavelength 

- Vary detection threshold 

5.5 Pseudo code for the evolutionary algorithm 

Initialize population  

While (number of generations < max allowed number) 
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{ 

 Calculate fitness score for each population member 

 Sort population 

 Delete worst 50% of population and make remaining pop parents of new pop members 

 Create offspring by mutating parents 

} 

 

5.6 Calculation of the fitness score for one single population member. 

For each pixel in the image, calculate the Mahalanobis distance to the primary reference point. If distance is less than 
threshold, declare pixel to be a member of the pattern. Perform a table lookup to determine if pixel belongs either to the 
primary pattern or to a secondary pattern. If pixel was declared as being a member of the reference pattern but is not 
contained in the table, then increment the false alarm counter. If pixel was declared not to be a member of the pattern but 
is contained in the table, increment the missed detection counter. The weighted ratio of missed detections versus false 
alarms is the fitness value for that population member. 

6. REPRESENTATIVE RESULTS 
 
6.1 ZMDA distance with 120 component feature vector 

Figure 3 compares two spectra, both measured with the full wavelength band of 120 contiguous wavelengths. It shows, 
on top, the reflectance values for two adjacent pixels, the central pixel of the primary training area, and the spectrum for 
the pixels at the origin of the coordinate system (shown at the bottom). 

 
Fig 3. Comparison between spectra of pixels that belong to the training area versus a pixel far removed from the training 

area. 

It is clear that the two spectra of the pixels belonging to the search area are much more similar to each other than to the 
pixel at the origin. Figure 4 shows an intensity plot for the ZMDA distance for all the pixels of the entire image FV2. 
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Fig 4. ZMDA distances to center-pixel of primary search object for the entire scene FV2 

This figure indicates that the ZMDA distance is an acceptable distance measure for a search for areas similar to the 
primary search area. The ZMDA distance between the two spectra of the reference area is 0.899; the ZMDA distance 
between the reference spectrum and the spectrum at the origin is 0.5348. This means that the ratio of the spectrum 
between two “good” pixels and between a good and a “bad” pixel is 0.5348/0.899 = 0.594. Clearly, we would like to see 
a much stronger discrimination between the spectra belonging to the pattern and the spectra of those pixels that are not 
members of the search pattern. Later in this section, we will show that by a) reducing the number of features and by b) 
replacing the ZMDA distance with the Mahalanobis distance, the ratio of the distances becomes much larger. The 
Mahalanobis distance between the two spectra belonging to the search pattern is 1.89, whereas the distance between the 
spectrum at the origin and the spectrum at the search pattern is 2,390; in other words, the ratio of the two distances is 
now 1264. It is this enormous difference in the ratios between distances between members of the search pattern and non-
members which makes the Mahalanobis distance an excellent discriminator 

6.2 Combining the clustering algorithm with the feature selection algorithm 

When comparing the overall performance of the image recognition process using the clustering and/or feature selection 
algorithm, it is important to keep in mind that a third parameter namely the distance measure used in these algorithms, 
also affects performance. The relationship between clustering, feature selection and distance measure is too complex to 
be described by a few simple rules or tables. The intent of this paper is to alert researchers to this complexity and 
hopefully to prevent some premature, generalized conclusions. If the paper succeeds in convincing the reader that the 
combination of 

- evolutionary clustering algorithm 

- an evolutionary feature selection algorithm 

- the selection of the Mahalanobis distance as the distance measure 

can provide superior pattern recognition performance, then the authors will be satisfied. 

 

Figures 5 and 6 demonstrate how Mahalanobis correlations can find objects in an image other than the one from which 
the training covariance matrix was obtained. Before the calculations for figures 5, 6, and 7 were performed, the number 
of wavelengths was reduced by the evolutionary feature reduction algorithm from 120 to 5. The cluster shown in figure 5 
was obtained by applying the evolutionary feature reduction algorithm to image FV2. 
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Fig 5. Cluster found by the evolutionary clustering algorithm in image FV2. The number of features is 5; the cluster was 

found in 20 evolutionary generations using ZMDA as distance measure. 

Next, the covariance matrix for the training area comprised of the 23 pixels shown in figure 5, was calculated. Based on 
this covariance matrix, we computed the Mahalanobis correlations of all the pixels in a 75 x 75 pixel area centered at 
600/445 in image FV1.   Note that this is a different image than the one shown in figure 5. Figure 6 clearly confirms that 
thee process of using one image for the calculation of the covariance matrix and  then using another image for finding an 
object provides very high Mahalanobis correlations. 
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Fig 6. Intensity plot of  Mahalanobis correlation values between 75 x 75 pixels (search area) and pixel 600/445. 
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The final picture in this sequence, figure 7, simply uses different scaling for the intensity plot of the Mahalanobis 
correlation strengths. The value of figure 7, besides being a nice image of the target area, is to make it very clear that 
selecting the most suitable visual representation of correlation results can enhance the value of a particular pattern 
recognition solution. 
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Fig 7:  The same Mahalanobis correlation intensities as shown in figure 6, but different scaling for the intensity plot 

By displaying these two images, we want to demonstrate more than just two nice looking figures; we want to point out 
the importance of proper visualization in image analysis. Selecting the most suitable representation and visualization of 
results in pattern recognition often enhances the value of a particular solution. 

6.3 Fitness function value and Receiver Operating Characteristic (ROC). 

As long as we are only interested whether or not a pixel belongs to a specified pattern, the problem is essentially a  
binary hypothesis testing problem. Reference 5 provides a good overview of binary hypothesis testing where the 
probability of detection versus the probability of false alarms are represented by ROC curves. 

Figure 8 depicts a ROC curve (the fitness function of one particular population member in the evolution of a reduced 
feature set. The distance measure used was Mahalanobis distance between an arbitrary pixel and the composite cluster of 
the reference area.. The probability of detection was defined as the number of correctly classified pixels (out of  409,600 
pixels), divided by the numbers of pixels in the image that were defined as belonging either to the primary or the 
secondary search area. 
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Fig 8. Example of a ROC curve for the analysis of image FV2 using Mahalanobis distance; Abscissa: Probability of false 

alarm; Ordinate: Probability of detection. 

7. CONCLUSIONS AND RECOMMENDATIONS 
The most important conclusion that can be drawn from this research is the fact that the Mahalanobis distance often 
constitutes a better discriminator than distance measures that rely simply on the comparison of two spectra of single 
pixels. The fact that the ZMDA distance measure worked as well as it did can partially be attributed to the very high 
signal-to-noise ratio in the the particular target images we analyzed. Presumably, if we would repeat a similar study 
using images with much lower signal-to-noise ratios, caused for example by motion of the objects or of the camera, the 
superiority of the Mahalanobis distance over the ZMDA distance measure would be more pronounced. 

Additional research to better define the advantages and disadvantages of decreasing the number of features in various 
pattern recognition problems is recommended. 
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