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ABSTRACT  

Red blotch disease is a viral disease that affects grapevines. Symptoms appear as irregular blotches on grape leaves with 

pink and red veins on the underside of the leaves. Red blotch disease causes a reduction in the accumulation of sugar in 

grapevines affecting the quality of grapes and resulting in delayed harvest. Detecting and monitoring this disease early is 

important for grapevine management. This work focuses on the use of hyperspectral imaging for detection and mapping 

red blotch disease in grape leaves. Grape leaves with known red blotch disease have been imaged with a portable 

hyperspectral imaging system both on and off the vine to investigate the spectral signature of red blotch disease as well 

as to identify the diseased areas on the leaves. Modified reflectance calculated at spectral bands corresponding to 566 nm 

(green) and 628 nm (red), and modified reflectance ratios computed at two sets of bands (566 nm / 628 nm,                 

680 nm / 738 nm) were selected as effective features to differentiate red blotch from healthy-looking and dry leaf. These 

two modified reflectance and two ratios of modified reflectance values were then used to train the support vector 

machine classifier in a supervised learning scheme. Once the SVM classifier was defined, two-class classification was 

achieved for grape leaf hyperspectral images. Identification of the red blotch disease on grape leaves as well as mapping 

different stages of the disease using hyperspectral imaging are presented in this paper. 
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1. INTRODUCTION  

Red blotch disease (RBD) is a viral disease that affects grapevines. Red blotch disease shows similar symptoms to 

leafroll disease, and is transmitted through pests and grafting1,2. The primary symptoms are leaves turning red at the base 

of the shoots with pink and red veins on the underside of the leaves. Red blotch disease causes a reduction in the 

accumulation of sugar in grapevines affecting the quality of grapes and resulting in delayed harvest3. There would be 

great value for viticulturists and grape growers to detect this disease, and watch its progression for disease management. 

This paper focuses on hyperspectral imaging of red blotch disease in grape leaves on and off the vine using a portable 

hyperspectral imaging system. The final result is mapping the red blotch diseased areas on the grape leaf. 

Inspecting and monitoring grapevine health through grapes and grape leaves have attracted the attention of viticulturists 

and technologists alike. Rapaport et al. report investigating water stress in grape leaves using hyperspectral imaging and 

partial least squares regression (PLS-R) as a more affordable and faster alternative tool to physiological measurements4. 

The authors found 530–550 nm and around 1500 nm to be useful bands for separating pigment changes and water 

content in grape leaves4. Fernandes et al. utilized the same methods, namely hyperspectral imaging and partial least 

squares, to classify four different clones of grape leaves5. The authors’ research revealed second derivative of the 

normalized spectra in the range 634–759 nm produced above 97.8% to 100% classification rates using the PLS classifier. 

In an earlier paper, Lenk et al. incorporated multispectral fluorescence and reflectance imaging at the leaf level to 

investigate these two technologies’ potential applications6. 

In this paper red blotch disease is separated from green leaf, dry leaf and background under a supervised support vector 

machine (SVM) classification scheme. SVM is a popular classifier that optimizes margins and decision boundaries 

between two classes7,8. Gualtieri and Chettri applied SVM to hyperspectral data cubes to differentiate corn and soy  
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spectra from AVIRIS9. The authors compared the results of SVM to minimum-Euclidean distance method and 

demonstrated higher percent accuracy of classification with SVM. In their review paper on image processing techniques 

for detecting, quantifying and classifying plant diseases, Garcia and Barbedo summarized multiple research groups’ 

work that utilized SVM for both two-class and multi-class classification10. In our paper, SVM is used as a binary or two-

class classifier where RBD is treated as Class 1, and green leaf, dry leaf, and background are collectively treated as Class 

2.  

2. METHODS 

2.1 Samples and Data Acquisition  

Grape leaves with known red blotch disease were imaged with SOC710-VP® hyperspectral imager (Surface Optics 

Corp., San Diego, CA, USA) calibrated between 400 and 1000 nm (Figure 1). Grape leaves were imaged on the vine, 

immediately after having been picked off the vine (Figure 1), and after returning to the SOC labs (Figure 2). Off-the vine 

hyperspectral imaging was achieved by placing the leaves on a gray reference panel, which constituted the background. 

Figure 3 shows grape leaves at different stages of red blotch disease. The imager is composed of 520 lines, 696 samples 

and 128 bands11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Portable hyperspectral imaging system (SOC710-VP®) and imaging off-the-vine leaves in the field. 

                                      

                          (a)            (b)                                      (c) 
Figure 2. Color images of red blotch diseased grape leaves obtained from the hyperspectral data cube acquired (a) on the 

vine, (b) immediately after the grape leaf was detached from the vine stalk, and (c) in the laboratory. (Southern California, 

14 July 2015). 
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Figure 3. Red blotch disease at different stages. 

 

2.2 Hyperspectral Data Processing and Analysis 

For this project, the feature selection process involved identifying a combination of wavebands at which the modified 

reflectance (see below) or the ratio of modified reflectance values differentiate red blotch from the rest of the image. 

Figure 4 summarizes the data processing and analysis chain. 

 

Figure 4. Hyperspectral data processing and analysis chain. 

The acquired images were first normalized against the gray panel image for on-vine and off-vine leaf imaging, and for 

leaves brought back to the lab. The normalization process involves dividing the grapevine hyperspectral image by the 

gray reference panel image voxel-by-voxel as described in a previous paper12.  

IN(i,j,k) = I(i,j,k) / (IR(i,j,k), for i=1,2,3,…,M, j=1,2,3,...,N, k=1,2,3,…,Z,                                    (1)     

where i refers to the line number, j represents the sample number, and k is the band number in the hyperspectral data 

cube. The imager is represented by 696 X 520 pixels such that M = 696, N = 520, with Z = 128 bands. I(i,j,k) represents  

the raw hyperspectral data value at voxel (i,j,k), and IR(i,j,k) is the reference panel data value at corresponding 

coordinates. Finally IN(i,j,k) is the normalized data value. We note that the hyperspectral camera automatically subtracts 

a dark image from any acquired hyperspectral data cube such that I and IR are resultant dark image-removed response of 

the camera. We call the result of the normalization process thus described modified reflectance due to the fact that the 

reference panel from which reference images are acquired is a uniform gray panel with approximately 18% reflectance 

in the captured spectral range as opposed to nearly perfect Lambertian reflectance targets typically used to compute 

reflectance. Modified reflectance of a given material is, therefore, expected to be higher than the reflectance obtained 

with 100% reflective materials according to Eq. (1). 

Normalization is followed by smoothing, applied in the spectral dimension using a 5x1 averaging window12: 

INS(i,j,k) =  N(i,j,k), Ɐ i ϵ [1,695], j ϵ [1,520], k ϵ [3,126],                                      (2) 

where INS(i,j,k) represents the spectrally smoothed normalized hyperspectral voxel value at coordinates (i,j,k). 

Once effective features are identified, classification is achieved via a SVM classifier as described in the next section. 
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3. DATA AND RESULTS 

3.1 Spectral and Spatial Representation of Grape Leaves 

Figure 5 shows sample spectra from different areas on the grape leaf of Figure 2 (b) selected and labeled by the user to 

represent green leaf and red blotch areas. Figure 5 depicts modified reflectance spectra of red blotch disease, green leaf 

and reference panel. In addition, spectra originally thought to be from red blotch disease but were then identified as 

‘sunburn’ or dry leaf are represented. In the spatial domain, the modified reflectance image is calculated by dividing the 

hyperspectral leaf image by the reference image as formulated by Eq. (1). In addition, an area named ‘sunburn’ 

demonstrates distinct spectral signatures separating its spectral response from that of red blotch disease. This area 

represents similar discoloration as the red blotch disease; however, upon closer inspection, unlike red blotch diseased 

areas, this area appears to be colored by dehydrated spots or perhaps dead leaf with no chlorophyll content. This area 

must be further confirmed or alternately labeled by a viticulturist expert. 

 

 

 

Figure 5. Modified Reflectance Spectra. 

 

 

Visual inspection of spectra in Figure 5 reveals distinct spectral peaks, valleys as well as gradients between spectral 

wavebands for each of the regions of interest. Based on this visual assessment, spatial representation of grape leaves at 

different wavebands and waveband ratios are demonstrated in Figure 6. Spatial images of the grape leaves show the 

distinction among various regions of the leaf as well as the background. 
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Figure 6. Spatial representation of grape leaf at various wavebands and waveband ratios highlighting different aspects of the 

leaf. 

3.2 Feature Extraction and Classification 

Table 1 summarizes bands at whose modified reflectance or ratio of modified reflectance values were selected as 

effective features. Based on the analysis described in the previous section, modified reflectance based on spectral bands 

associated with 566 nm and 628 nm with modified reflectance ratios based on band 566 nm and 628 nm, as well as 680 

nm and 738 nm, were selected as features differentiating red blotch diseases from the rest of the scene. The modified 

reflectance based on these two bands and two band ratios were then used to train the SVM classifier in the supervised 

learning scheme.  

 
      Table 1. Wavebands, and associated modified reflectance values and ratios selected as effective features 

WAVEBANDS 

(nm) 

FEATURES 

(Modified Reflectance or  

Modified Reflectance Ratio)* 

(nu) 

566 R566 

628 R628 

680 R566/R628 

738 R680/R738 

   *Rx – Modified Reflectance;  Rx/Ry – Modified Reflectance Ratio 

 

For the training set, first normalized then smoothed spectra of Figure 5 extracted from the hyperspectral leaf image 

represented in Figure 2 (b) were used as labelled data. Red blotch diseased leaf spectra were labeled as Class 1. All other 

spectra (green leaf, background (gray reference panel) and sunburnt (dry) areas) were identified as Class 2 for the 

purpose of the binary SVM classifier. A quadratic kernel was used for classification programmed using MATLAB 2014 
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procedures. Two-class mapping of grape leaf images identifying RBD was achieved using the same training set of 

labelled spectra described above. 

Figure 7 through 9 demonstrate the detection of red blotch disease on grape leaves on and off the vine and at various 

stages of the disease. Red blotch is clearly identifiable by the binary classification scheme in all the grape leaf 

hyperspectral images presented. 

 

 

 
(a)                                                      (b)                                                     (c) 

Figure 7. Detection of red blotch disease in the grape leaf of 2(b) acquired in the field after the leaf was removed from the 

vine. (a) Color representation of the grape leaf with red blotch disease; (b) mask of red blotch diseased areas on the leaf; (c) 

Color image of diseased areas on the leaf. (Data acquired in the field immediately after leaf was detached from the vine, 14 

July 2015) 

 

 

 
 

Figure 8. Detection of red blotch disease on grape leaves on the vine. (a) Color image of grape leaves with RBD; (b) mask 

of red blotched diseased areas; (c) color image of RBD on the leaves. (Data acquired on the vine, 23 July 2015) 
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Figure 9. (a) Color image of three grape leaves at different states of red blotch disease; (b) mask of red blotch diseased 

areas; (c) color image of identified RBD on the leaf. (Data acquired at SOC labs, 23 July 2015) 

Figures 7-9 show the mapping of the red blotch disease on the grape leaves in ascending order of advancement of the 

disease demonstrated in different leaves. In Figure 7, the disease appears to have started at the root of the stalk and 

spread along the left and right sides of the top of the leaf covering less than 25% of the leaf surface. In Figure 8, the 

disease appears to have spread around the periphery of the leaf including other minor veins. In Figure 9, RBD is visible 

on well over 50% of the leaf surface, including leaf area and veins. This methodology can thus be used to identify and 

then quantify red blotch disease on grape leaves as part of a potential disease monitoring and management strategy. 
 

4. DISCUSSION 

The 2D RBD maps on the grape leaf surface depicted in Figures 7-9 show that RBD classification follows the visual 

trends for the extent of the disease in the three tested grape leaves. It is also visually apparent that the RBD areas show 

green pigmentation which is attributed to the green leaf as part of the RBD mapping. This suggests the possibility of 

mixed pixels around the neighborhood pixels of RBD that also possess some properties of both RBD and green leaf. 

Future studies include unmixing of these pixels and identifying thresholds where RBD can be detected even when the 

leaf visually shows green leaf coloration. This would be of value for early detection of the disease, if and when green 

leaf attributes visually dominate the mixed pixel.  

  

During the supervised training of the SVM classifier, the user selected areas belonging to red blotch disease; however, 

differences in spectral response from such labeled spectra revealed that what was originally identified as RBD was in 

fact close, but different, in both pigmentation and texture on the leaf. The authors called these areas ‘sunburn’. Sunburnt 

areas are differentiated here due to their different spectral signatures from that of red blotch diseased areas, which 

emphasizes the advantage of hyperspectral imaging over digital color photography or visual inspection alone which an 

untrained eye could easily miss. 

  

5. CONCLUSIONS 

Hyperspectral images of grape leaves have been acquired with SOC710-VP® visible-to-NIR range portable hyperspectral 

imaging camera with leaves on the vine, off-the-vine in the field, and after being returned to the lab. Using modified 

reflectance at two bands (R566 nm, R628 nm) and two modified reflectance ratios using four bands (R566 nm / R628 nm,          

R680 nm / R738 nm), red blotch disease is identifiable using hyperspectral imaging technology together with the discussed 

image processing and analysis techniques. Further studies involve quantification and monitoring of the progression of 

the disease for disease management and harvest planning in grape vines, and increasing the number of classes on the 

grape leaf area that are to be segmented using SVM classifier. 
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