
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Detection and identification of
plastics using SWIR hyperspectral
imaging

Mehrubeoglu, Mehrube, Van Sickle, Austin, Turner, Jeffrey

Mehrube Mehrubeoglu, Austin Van Sickle, Jeffrey Turner, "Detection and
identification of plastics using SWIR hyperspectral imaging," Proc. SPIE
11504, Imaging Spectrometry XXIV: Applications, Sensors, and Processing,
115040G (22 August 2020); doi: 10.1117/12.2570040

Event: SPIE Optical Engineering + Applications, 2020, Online Only

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Aug 2020  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Detection and identification of plastics using 

SWIR hyperspectral imaging 

 
Mehrube Mehrubeoglu*1a, Austin Van Sickleb, Jeffrey Turner2a 

1Hyperspectral Optical Property Instrumentation (HOPI) Laboratory, Department of Engineering 

2Laboratory for Microbial and Environmental Genomics, Department of Life Sciences  
aTexas A&M University-Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX 78412, USA  

bSurface Optics Corporation, 11555 Rancho Bernardo Rd., San Diego, CA 92127, USA 

ABSTRACT  

Most plastics are typically transparent in the visible spectral range, rendering them challenging to detect using silicon-

based vision sensors. In this work a SWIR hyperspectral imaging system is used to collect the SWIR hyperspectral 

signatures as well as spatial information of a variety of plastics outdoors to test this technology for plastic debris detection 

and identification in future marine and environmental applications. In this study, hyperspectral imaging data have been 

collected from plastic samples including CPVC, PVC, LDPE, HDPE, PEEK PETG, PC, PP, PS, and Polyester in a natural 

environment. The data is acquired using a SWIR hyperspectral imaging system sensitive to 900 - 1700 nm wavelength 
range. Four spectral indices based on labeled spectral signatures have been identified and used as features to separate 

plastic materials and for classification of pixels. Semantic segmentation based on plastic materials is achieved in an 

independent scene with multiple plastic samples using shortest Euclidean distance to labeled feature cluster centers through 

multi-variate data analysis. The results show the capability of this technology and technique to detect and classify different 

plastics in natural environments under different light conditions. 

Keywords: hyperspectral imaging, SWIR hyperspectral imaging system, NIR imaging spectroscopy, macroplastics, 

microplastics, plastic debris detection, identification of plastics, semantic segmentation 

 

1. INTRODUCTION  

Detecting plastic waste and debris is an on-going environmental and health concern. Plastic pollution, especially in aquatic 

environments, is widely regarded as an environmental crisis. In 2010 alone, 275 million metric tons (MT) of plastic waste 

was generated and 4.8 to 12.7 million MT of this waste are expected to have entered the oceans[1]. A recent report from 

the Ellen MacArthur Foundation estimates that ocean plastic debris will outnumber fish by the year 2050[2]. In particular, 

microplastics have received significant attention due to their global abundance and potential for negative ecological and 

human health outcomes3,4. For example, microplastic exposure was shown to induce gene transcription, immune response, 

and behavioral changes in zebrafish5. Similarly, microplastic exposure was shown to induce intestinal barrier disfunction 

and bile acids metabolism disorder in mice6. Accurate monitoring and risk assessment will require overcoming the 

fundamental challenges of detecting and identifying microplastics. Advanced methodologies are needed to quickly and 

accurately analyze large numbers of heterogeneous samples at the micro-scale in a high-throughput manner.  

The detection and identification of microplastic debris is commonly a three-step process: 1) Bulk or concentrated water 

samples are passed through a membrane filter to collect microplastic debris, 2) Non-synthetic debris (i.e., natural 
particulate organic matter) is digested using hydrogen peroxide, and 3) Particles and fibers are detected and identified 

visually using microscopy and/or chemically using spectroscopy (e.g., FTIR and Raman) or chromatography (e.g., 

pyrolysis GC/MS and HPLC)7. Microscopy is simple and affordable, but limitations include a high possibility of false 

positives. Previous studies8 have shown that rates of false positive identification can exceed 70%. In the example of 

microplastic fibers, which are especially difficult to distinguish from natural fibers, another study demonstrated that more 

than 98% of fibers were falsely identified9. Spectroscopy is more accurate, but limitations include the lengthy time for 

sample analysis. The coupling of micro-FTIR with semi-automatic mapping technology reduces analysis time to 

approximately nine hours per filter but this only permits the analysis of two samples per day10. Pyrolysis GC/MS is 

advantageous in that it permits the analysis of bulk samples, but the destructive nature of thermal analysis prevents further 

characterization11. 
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Hyperspectral imaging (HSI), or imaging spectroscopy, is a promising alternative method where membrane filters are 

imaged and processed by multivariate data analysis to identify and characterize plastic debris. In contrast to previous 

spectroscopic methods that require the time-consuming analysis of individual particles, HSI allows for the rapid analysis 
of many particles simultaneously. Working with heterogeneous environmental samples, Karlsson showed that 

hyperspectral image analysis detected a higher number of particles than conventional microscopic analysis12, and Shan 

demonstrated that HSI correctly identified more than 97% of microplastic particles13. Collectively, the increased sensitivity 

reduces the risk of underestimation, the increased accuracy reduces the risk of false positives, and the less time-consuming 

analysis permits high-throughput analysis. 

In this study, short-wave infrared (SWIR) HSI is used to investigate the separability of thirteen different macroplastic 

samples of dimensions 3" x 4". The purpose of this investigation is to identify these plastic materials based on their spectral 

characteristics under natural light in a representative environment that they are expected to be found in the form of debris. 

Although multiple groups have been studying plastics detection and identification using hyperspectral imaging, this study 

includes more varieties of plastics than have been found in the literature. 

1.1 Plastic Pollutants in the Environment 

The most common plastics include Polypropylene (PP), Low Density Polyethylene (LDPE), High Density Polyethylene 

(HDPE) the three of which represent over 56% of produced plastics as the polyolefin (PO) family, followed by 

polyethylene terephthalate (PET), Polyvinyl Chloride (PVC), and Polystyrene (PS)14,15. PET can be flexible or thoroughly 
rigid, and is highly durable, which is why it is used in containers for water, soft drinks, cooking oil, packaging and freezable 

food trays, as well as polar fleece, among other uses. HDPE can withstand high temperatures as well as chemicals, and is 

therefore used for containers of cleaning solutions, soaps, food and drinks, as shopping and freezer bags in addition to 

pipes, bottle caps, insulation material, helmets, and other products which are all recyclable. PVC is widely used due to its 

practical material properties and affordability. PVC can be made into clothing, including leather-like materials, and is 

commonly found in signage, furniture, tubing, plumbing pipes, vinyl flooring, cables, cleaning solution containers, and 

water bottles14,16. LDPE shows itself in everyday use as shopping bags, containers, parts for machines, drink cartons, 

hardware casings, as well as laundry bags among other products. Polystyrene is used as Styrofoam, disposable razors, and 

CD cases16,17. PP appears in rugs, ropes as well as bottle caps16.  

1.2 Hyperspectral Imaging for Characterization of Plastics 

Multiple research groups have investigated the use of SWIR hyperspectral imaging for the detection of both macro and 
microplastics. At the macro level, Balsi et al.17 use SWIR spectral imaging in the range 900 nm – 1700 nm for spectral 

characterization of polymers including Polyethylene (PE) of the three types (HDPE, LDPE, and Linear Low Density 

Polyethylene (LLDPE), as well as PP, PVC, PS, Polycarbonate (PC), PET, and Polylactic acid (PLA). This spectral range 

is also referred to NIR in the literature. The authors use a device based on two-linear-spectrometer principles for spectral 

characterization. The authors identify the absorption peaks for the different plastics using continuum removal method. 

Hibbitts et al. use hyperspectral imaging to isolate two effective infrared bands for discriminating plastic objects such as 

fiberglass, styrene, PP, and polyesters by taking advantage of the first harmonic of the vibrational carbon-hydrogen 

absorption band between 1650-1750 nm16. The authors identify the band ratio 1540:1710 (bands in nm) as an effective 

ratio to detect plastics with a two-camera system optimized around these wavebands.  

Serranti et al. describe SWIR hyperspectral imaging in the range 1000 – 2500 nm combined with chemometrics to identify 

polymers in samples collected from different marine environments15. The authors show principal component analysis 

(PCA) score plots for first and second principal components and use partial least-squares discriminant analysis to 
differentiate among polymers such as PP, PE, and expanded Polystyrene. In a parallel study, Serranti describes the potential 

of SWIR HSI for monitoring marine plastic waste18.  

In an earlier 2013 study, Bonifazi et al. lay the foundation for quality control of plastic recycling using a hyperspectral 

imaging system they developed for PO materials in plastic waste streams19. The authors use a SWIR HSI system coupled 

with multivariate analysis for spectral analysis and classification for this particular application. Moroni et al. also describe 

the application of HSI in recycling for the separation of PET and PVC in different phases of their life cycle20. The group 

tests visible (400-1000 nm) and SWIR (900-1700 nm) range and concludes that the visible-range wavebands were not 

effective in differentiating PET and PVC due to the visible range being dependent on colors. The authors use the ratio of 
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absorbance values at 1656 nm and 1712 nm to separate PET and PVC. In their more recent publication, Moreno and Mei 

describe plastics as contaminants in the recycling process that need to be separated21. This time the authors describe the 

use of hyperspectral imaging to separate PET, PS and PLA samples at their different life cycles (from virgin to urban 

plastic waste). The authors make use of distinctive absorption bands as spectral indices (ratio or difference of two bands) 

for the three materials together with correlation matrix analysis for a real-time application. After continuum removal, the 
authors identify the spectral index of 1170:1650 (ratio 1) to separate PET from PLA and PS, and 1160:1140 (ratio 2) to 

separate PLA from PS after that, using a decision tree procedure. In another recycling application, Caballero et al. describe 

the use of HSI to separate polymers with flame retardants to allow grouping of plastics with the same polymer type and 

additive content necessary for recycling22. The authors implement chemometrics solutions for classification, including 

partial least-square discriminant analysis, decision tree, and hierarchical model, achieving a sensitivity of higher than 90% 

with discriminant analysis method that the authors report are valuable findings for plastics and waste management 

industries. 

At the micro level, Karlsson et al. investigate HSI and data analysis for detection and identification of plastic contamination 

in seawater filtrates in simulated samples to test the application of SWIR HSI in the detection of microplastics down to 

300 µm in size12. Zhang et al. describe the use of hyperspectral imaging in detection of microplastic polymer pellets of 

PE, PS, PET, PP and PC in sizes ranging from 0.1 to 1 mm23. The authors incorporate support vector machine classification 

scheme for differentiating the polymers. Chuczko et al. explore use of neural networks for detecting microplastics in 
hyperspectral images obtained from natural environments24. They train their algorithm with 1000 samples, and test with 

100 samples, achieving 95% accuracy of classification in their controlled experiments. They conclude that use of machine 

learning techniques is promising for the future of microplastic classification. 

In this study we investigate spectral signatures of thirteen different plastic samples using SOC710-SWIR hyperspectral 

imaging system25. Using band ratios as spectral indices, the tested materials are detected and their separability 

demonstrated in a scatter plot representing each material. The list of tested plastic samples and methods for hyperspectral 

image acquisition, visualization and analysis are presented in the next section. Images of plastic samples as well as spectral 

and spatial data from the SOC710-SWIR HSI system is shown in Section 3. Plastic sample separation and identification 

results and analysis are presented in Section 4. Conclusions are summarized in Section 5. 

2. METHODOLOGY 

Table 1 summarizes the thirteen different plastic samples analyzed in this study. These materials ranged in their chemical 

makeup as well as color.  
 

Table 1. Plastic materials26,27 investigated using SOC710-SWIR HSI 

Sample Material Acronym Color 

1 High-Density Polyethylene HDPE black 

2 High-Density Polyethylene HDPE white 

3 High-Temperature 
Chlorinated Polyvinyl 

Chloride 

High-Temperature 
CPVC 

gray 

4 Kydex Acrylic  
Polyvinyl Chloride 

Kydex Acrylic PVC gray 

5 Low-Density Polyethylene LDPE white 

6 Polycarbonate PC clear 

7 Polyetheretherketone PEEK tan 

8 Polyethylene Terephthalate 
Modified with CHDM 

PETG clear 

9 Polyester [unspecified] Polyester white 

10 Polypropylene PP white 

11 Polystyrene PS amber 

12 Polystyrene PS white 

13 Polyvinyl Chloride PVC black 
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2.1 Equipment and Collection of Hyperspectral Data Cubes 

Hyperspectral data cubes were collected by a SWIR hyperspectral imaging (HSI) system (SOC710-SWIR, Surface Optics, 

San Diego, CA) that covered the spectral range from in 900 – 1700 nm, with spatial size of 640 x 512 pixels and 288 

spectral bands25. Each pixel represented a bit depth of 12 bits. The system’s image acquisition parameters were optimized 

for the sample and calibration panel. Calibration panel is necessary because the measurements were taken outside in natural 
sunlight, which varies based on the time of day and seasons. Calibration panel allows the normalization of data across 

multiple lighting conditions, where plastic debris would usually be found, as opposed to repeatable controlled laboratory 

environments. The calibration panel, a gray panel used as a reference, displays low reflectivity (about 18%). The gray 

calibration panel is advantageous over highly reflective white calibration panels, since the gray panel allows increased 

light reflectance from the tested sample without saturating the reference or calibration panel. The measured reflectance, in 

turn, is a modified reflectance, RM, that can be higher than the reference panel in some instances, calculated as:  

RM(x,y,𝜆) = Ii(x,y,𝜆) /Ig(𝜆),                                                                     (2) 

where (x,y) represents the 2D spatial location of the pixel within each hyperspectral image frame, and 𝜆 refers to a single 

spectral band at which the reflectance is to be computed. Ii(x,y,𝜆) represents the observed value as a single data point 
(voxel) in the hyperspectral data cube corresponding to the tested sample in the scene located at pixel (x,y) in the 2D image 

frame at waveband 𝜆. Ig(𝜆) is the spatial average of observed values for the gray panel at spectral band 𝜆. Ig(𝜆) was obtained 

from the same scene as the sample, but can be acquired independently near the same time of the experiments.  The dark 

response is ignored in the computation of RM above. 

2.2 Spectral and Spatial Data Visualization 

Each pixel’s spectrum represents the (mixed) material spectral signature observed at the spatial location of the pixel. 

Spatial visualization, on the other hand represents the scene with the objects’ physical and relative placement in space, 

more specifically, the 2D projection of the 3D scene. Spatial information at different spectral bands can be extracted from 

hyperspectral data cubes as image frames corresponding to a narrow wavelength range based on the manufacturer’s system 

and internal calibration. Combining spectral and spatial data produces information that may not be attainable by spectral 

or spatial information alone, such as the material at a given location in the scene. During testing, spectral signatures for 
each plastic sample were obtained from the hyperspectral data cubes based on the spatial information locating the sample 

in the scene. After data processing, a semantically segmented image is created as described next, demonstrating the 

identified location of plastic samples. MATLAB 2017a was used for all data processing post hyperspectral data acquisition. 

2.3 Material Classification and Semantic Mapping 

Four spectral indices were identified for detection, separation, and semantic segmentation and mapping of the plastic 

samples. First, each sample was imaged using SWIR HSI separately for spectral labeling. Testing was achieved from an 

independent HSI scene captured on a different day with multiple plastic samples in the scene. The spectral indices were 

chosen from spectral bands as band ratios demonstrating the highest separability among the thirteen plastics’ spectral 

signatures represented as modified reflectance explained in a previous work28. Eight spectral band pairs were chosen that 

corresponded to 985 nm and 1041 nm; 1139 nm and 1223 nm; 1419 nm and 1461 nm; and 1574 nm and 1670 nm. Band 

ratios were computed as ratio1 = 985:1041, ratio2 = 1139:1223, ratio3 = 1419:1461, and ratio4 = 1574:1670 and 

corresponded to the values (observations) at each band. 

The band ratios were used in scatter plots to demonstrate material separability visually. Mean cluster values were computed 

from 500 spectra for each plastic material. Euclidean distance was computed between cluster means and spectral indices 

obtained from each of the unlabeled pixels in a new hyperspectral image for semantic segmentation and mapping. 

Euclidean distance is calculated for multivariate data as: 

DE = [ (x1 – xr1)2 + (x2 – xr2)2 + (x3 – xr3)2 + … + (xn – xrn)2 ]
½

,                                         (2) 

where DE is the Euclidean distance from the unknown sample spectral indices used as features, or representation of spectra, 

to the cluster center for labeled plastic spectral indices. X = [x1, x2, x3, …, xn] is the n-variate feature vector (n=4 in this 

study) for each spectrum.  Xr = [xr1, xr2, xr3, …, xrn] represents the n-variate feature vector for the cluster center belonging 

to labeled plastics. DE is computed separately for the cluster center of each of the thirteen plastics. If the shortest Euclidean 

distance between the tested pixel’s spectral indices and cluster means was found below a distance threshold (acceptably 

close), the plastic label was assigned to that pixel. Otherwise, the pixel was not labeled: Ii(x,y) ϵ S if DE < t, where                     
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S = {1, 2, 3, …, 13} where each number in S represents a plastic material label. t is the threshold value above which the 

pixel is not labeled as one of the plastics. 

A semantic map was created based on the match between the tested pixel’s feature vector of spectral indices, and each of 

the thirteen labeled plastics’ mean feature vector (cluster center) of the same spectral indices. 

3. DATA 

In this section, the samples and experimental data are presented. Figure 1 displays each of the investigated plastic samples 

as a hyperspectral image frame extracted from a spectral band from the hyperspectral images. Each scene contains a single 

plastic sample. The plastic sample appears in front of the calibration panel. The SWIR hyperspectral image is acquired 

outdoors under natural light. The displayed image frames are extracted from SWIR hyperspectral data cubes at waveband 

1139 nm (frame 85) for demonstration purposes. Sample numbers are as described previously in Table 1. 

 

 

1        2            3    4         5 

   

6         7            8    9      10 

 

11        12          13 
 

Figure 1. Single plastic samples in front of gray calibration panel acquired outdoors (frame 85 corresponding to ~1139 nm 
wave band) and used for spectral feature selection. (Plastic samples, in listed order, 1: HDPE (black), 2: HDPE (white),             
3: High-Temperature CPVC (gray), 4: Kydex Acrylic PVC (gray), 5: LDPE (white), 6: PC (clear), 7: PEEK (tan), 8: PETG 
(clear), 9: Polyester (white), 10: PP (white), 11: PS (amber), 12: PS (white), 13: PVC (black)). 

 

Figure 2 displays multiple plastic samples in a single scene collected on a different date and time. This scene is used for 

testing, and mapping plastic identification results. We note that Polyethylene (PE) was not included in the training due to 

the unavailability of this sample during the feature extraction period. In addition, this scene is missing the PS (amber) 

sample. 
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Figure 2 Color image of tested plastic samples used in classification. (Cal Panel: Calibration Panel; PE: Polyethylene) (SWIR 
hyperspectral image of the same scene was obtained with the SWIR HSI system separately). 

 

Average modified spectra for plastic samples are displayed in Figure 3. Each spectrum represents the average of 500 
spectra from the corresponding material. Since the reference or calibration panel is a gray (and not white) panel, modified 

reflectance is higher than the reference for most of the materials, and lower or comparable in selected samples such as 

HDPE black, PETG clear,  and PVC black, for the majority of the spectra.  

 

 

  
 

Figure 3. Average modified reflectance spectra using gray calibration panel. 
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4. RESULTS 

Figure 4 displays the ratio images from which the spectral indices were extracted and used for detection and identification. 

The value of multiple spectral indices lies in the fact that each spectral band ratio displays distinctive properties of different 
plastics, which can then be combined for classification. In other words, when each band ratio image is analyzed, it can be 

seen that different plastics are highlighted as bright versus dark areas depending on the ratio or index. 

 

 

 

 
 

(a)                                                                                      (b) 

 
                                     (c)          (d) 

Figure 4. Images representing four band ratios. (a) ratio1 = 985:1041; (b) ratio2 = 1139:1223; (c) ratio3 = 1419:1461;                  
(d) ratio4 = 1545:1670. 

 

 

Figure 5 demonstrates the separability of tested plastic materials based on the three out of four band ratios selected and 

acquired from independent hyperspectral data cubes of each plastic sample. Only three band rations are displayed due to 

the limitation of 3D spatial plots. The feature values represented in the scatter plot come from Figures 3 and 4 at multiple 

(500) pixel locations for each material. Figure 5 shows the separability of plastic materials using the selected spectral 

indices. Some overlap exists between PVC (black) and HDPE (black), as well as between PETG (clear) and Kydex Acrylic 

PVC (gray). These two groups are plotted separately in Figure 6 to qualitatively visualize the extent of overlap in Figure 

5. LPDE (white) shows the highest separability followed by HDPE (white) and PP (white). Polyester (white), PEEK (tan) 

and PS (white) are clustered in the same feature spatial proximity, but show clear between-class separability. PS (amber) 

and PC (clear) also appear close in the feature space but display between-class separability. High-temperature CPVC is 
clustered in the same feature space as Kydex Acrylic PVC (gray), and PETG (clear) as well as HDPE black. However, the 

clustering shows between-class separability of the high-temperature CPVC. In addition to the displayed feature space in 

3D, the fourth band ratio is expected to alleviate some of the overlaps due to the above-mentioned materials. 
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Figure 5. Clustering and separability of 13 plastic samples’ band ratios (spectral indices) from average modified reflectance 
spectra represented in Fig. 3. Spectral indices were computed from individual samples in Table 1 and Figure 1. 

 

 

 
 

 

Figure 6. Two plastic pairs with overlapping features. Overlap between HDPE black and PVC black (bottom two clusters), 
and PETG (clear) and Kydex Acrylic PVC gray (top two clusters) reduces separability of the classes, and may cause 
misclassification. Fourth feature (not shown) is used to alleviate the overlap problem. 
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Figure 7 displays (a) a single test hyperspectral image frame and (b) semantic map based on classification and semantic 

segmentation results. The results are obtained from the SWIR hyperspectral image scene containing multiple plastic 

samples previously shown using digital color photography in Figure 2. This independent scene was not used during feature 

extraction shown in the scatter plots and spectral index images. 

 

(a) 

 

(b) 

Figure 7. (a) Independent scene with different plastic samples extracted from hyperspectral data cube (frame 50, band           
1041 nm, selected for demonstration purposes); (b) Initial mapping of plastics to the scene based on classification results. 

 

As can be seen in Figure 7, nine different classes are visible among the plastic samples. The two PVC (black) samples in 

the scene (row 1, sample 7, and row 2, sample 5) are correctly identified. HDPE (black) (row 2, sample 7) has been 

classified in the same category as PVC (black) (row 1, sample 7). This can be explained based on the high similarity 

demonstrated in the scatter plots of Fig. 6, where the spectral indices forming the feature vectors demonstrated overlap. 

HDPE (white) (row 1, sample 3) was correctly identified. In this scene this material showed similarities with the 

background white screen, which was also classified as HDPE (white). It is possible that the background screen belonged 

to the same plastic category. PETG (clear) (row 1, sample 1) was distinctly identified, but showed partial similarity to PC 

(clear) (row 2, sample 4). This is a surprising result because the scatter plots show effective separability between these two 
classes. The error could possibly be due to 3D spatial symmetry of the tested feature vector in Euclidean distance to both 

clusters, which may render the DE value closer to another cluster, if features happened to be close to cluster boundaries, 

for instance. PP (white) (row 1, sample 2) and LDPE (white) (row 2, sample 2) were classified as the same which was also 

surprising and requires further investigation. Polyester (row 1, sample 4) was correctly and uniquely identified. Kydex 

PVC (gray) (row 1, sample 6) was correctly identified but showed partial similarity to high-temperature CPVC (row 2, 

sample 3), which was also gray. PE (row 1, sample 5), which was not one of the thirteen samples in Table 1, was identified 

as a different material. PEEK (tan) (row 2, sample 1) was generally correctly identified, with some similarities to PETG 

(clear) (row 1, sample 1) and PC (white) (row 2, sample 4). Overall, out of the 14 samples present in the scene, including 

one that was not included in the original training, 10 were correctly classified using this simple distance metric.  
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5. CONCLUSION 

Thirteen different plastic samples typically found in everyday use and general plastic waste were studied using        

SOC710-SWIR hyperspectral imaging system. Their separability was demonstrated using the hyperspectral image data 
and spectral indices as features. Some classification overlap existed in the final classification and mapping of the plastics. 

It is expected that some spectral mixing occurs due to spectral reflection from the samples that might result in slightly 

mixed pixels that might shift some spectral peaks. Shadows also affected the accuracy of the semantic map. Such 

discrepancies can be reduced with other image processing and classification schemes.   

The SWIR region of the electromagnetic spectrum allows the capture of features not visible in the visible spectral 

range making this technology valuable for detecting materials that may have similar visual properties. The tested plastics 

were made of different materials and colors. Hyperspectral imaging continues to present itself as a viable imaging solution 

for detection and identification of plastics. SWIR HSI, in particular, shows the feasibility of this technique in identifying 

plastics in natural settings which is important for detection of plastic debris in terrestrial as well as marine environments. 

A successful detection and identification system requires proper coupling with classification algorithms for semantic 

segmentation and mapping that are implemented in software. The more recent deep learning and related algorithms show 
the potential for identifying a multitude of objects in both natural and laboratory environments, but require significant 

amounts of data for training, and represent ongoing work.   

ACKNOWLEDGMENT 

This project is an extension of the work performed as part of a grant from Texas A&M University-Corpus Christi - TCRF: Integrated 

Characterization and Simulation System for Microplastics in Coastal Watersheds. The authors thank Leif Hendricks for his valuable comments. 

REFERENCES 

[1] Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A.,  Narayan, R., and Law, K. L., 

“Plastic waste inputs from land into the ocean,” Science, 347(6223), 768-769, (2015). 

[2] “The new plastics economy: rethinking the future of plastics,” World Economic Forum, 2016, 1-36 (January 2016). 

http://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf 

[3] Carbery, M., O’Connor, W., and Thavamani, P., “Trophic transfer of microplastics and mixed contaminants in the 

marine food web and implications for human health,” Environment International, 115, 400-409 (2018). 

[4] Wang, W., Gao, H., Jin, S., Li, R., and Na, G., “The ecotoxicological effects of microplastics on aquatic food web, 

from primary producer to human: A review,” Ecotoxicology and Environmental Safety, 173, 110-117 (2019). 
[5] Limonta, G., Mancia, A., Benkhalqui, A., Bertolucci, C., Abelli, L., Fossi, M. C., and Panti, C.,  “Microplastics 

induce transcriptional changes, immune response and behavioral alterations in adult zebrafish,” Scientific Reports, 

9, 15775 (2019). 

[6] Jin, Y., Lu, L., Tu, W., Luo, T., and Fu, Z., “Impacts of polystyrene microplastic on the gut barrier, microbiota and 

metabolism of mice,” Science of the Total Environment, 649, 308-317, (2019). 

[7] Shim, W. J., Hong, S. H., and Eo, S. E., “Identification methods in microplastic analysis: a review,” Analytical 

Methods, 9, 1384-1391 (2016). 

[8] V. Hidalgo-Ruz, L. Gutow, R. C. Thompson, M. Thiel, “Microplastics in the marine environment: A review of the 

methods used for identification and quantitation,” Environmental Science & Technology, 46, 3060-3075 (2012). 

[9] Löder, M. G. J. and Gerdts, G., “Methodology used for the detection and identification of microplastics – a critical 

appraisal,” Marine Anthropogenic Litter, Ed. M. Bergmann, L. Gutow, M. Klages, 201-228 (2015). 

[10] Tagg, A. S., Sapp, M., Harrison, J. P., and Ojeda, J. J., “Identification and quantitation of microplastics in 
wastewater using focal plan array-based reflectance micro-FT-IT imaging,” Analytical Chemistry, 87, 6032-6040 

(2015). 

[11] Li, J., Liu, H., Chen, J. P., “Microplastics in freshwater systems: A review on occurrence, environmental effects, 

and methods for microplastic detection,” Water Research, 137, 362-374 (2018). 

[12] Karlsson, T. M., Grahn, H., van Bavel, B., and Geladi, P., “Hyperspectral imaging and data analysis for detecting 

and determining plastic contamination in seawater filters,” Journal of Near Infrared Spectroscopy, 24, 141-149 

(2016). 

Proc. of SPIE Vol. 11504  115040G-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Aug 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

[13] Shan, J., Zhao, J., Liu, L., F. Wu, X. Wang, “Simple and rapid detection of microplastics in seawater using 

hyperspectral imaging technology,” Analytica Chimica Acta, 1050, 161-168 (2019). 

[14] The 5 Most Common Plastics & Their Everyday Use. 

https://www.cutplasticsheeting.co.uk/blog/uncategorized/the-5-most-common-plastics-their-everyday-uses/  

(last accessed: 6-18-2020) 
[15] Serranti, S., “Plastic waste monitoring and recycling by hyperspectral imaging technology,” Proc. SPIE 11197, SPIE 

Future Sensing Technologies, 1119706 (November 2019). https://doi.org/10.1117/12.2549670 

[16] Hibbitts, C. A., Bekker, D., Hanson, T., Knuth, A., Goldberg, A., Ryan, K., Cantillo, D., Daubon, D., and Morgan, 

F., “Dual-band discrimination and imaging of plastic objects”, Proc. SPIE 11012, Detection and Sensing of Mines, 

Explosive Objects, and Obscured Targets XXIV, 1101211 (22 May 2019). https://doi.org/10.1117/12.2519014 

[17] Balsi, M., Esposito, S. and Moroni, M., "Hyperspectral characterization of marine plastic litters," 2018 IEEE 

International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, 

Italy, 28-32 (2018). doi:10.1109/MetroSea.2018.8657875 

[18] Serranti, S., Fiore, L., Bonifazi, G., Takeshima, A., Takeuchi, H., and Kashiwada, S., “Microplastics characterization 

by hyperspectral imaging in the SWIR range,” Proc. SPIE. 11197, SPIE Future Sensing Technologies (Nov. 2019). 

[19] G. Bonifazi, M. D'Agostini, A. Dall'Ava, S. Serranti, F. Turioni, “A new hyperspectral imaging based device for 

quality control in plastic recycling,” Proc. SPIE. 8774, 87741M 1-13, Optical Sensors (2013). 
[20] Moroni, M., Mei, A., Leonardi, A., Lup, E., and La Marca, F., “PET and PVC Separation with Hyperspectral 

Imagery,” Sensors, 15, 2205-2227 (2015). doi:10.3390/s15010205 

[21] Moroni, M. and Mei, A. “Characterization and Separation of Traditional and Bio-Plastics by Hyperspectral 

Devices,” Appl. Sci., 10(2800) 1-19 (2020). https://doi.org/10.3390/app10082800 

[22] Caballero, D., Bevilacqua, M., and Amigo, J. M., “Application of hyperspectral imaging and chemometrics for 

classifying plastics with brominated flame retardants,” J. Spectral Imaging, 8(a1), 1-16 (2019). 

[23] Zhang, Y., Wang, X., Shan, J., Zhao, J., Zhang, W., Liu, L., and Wu, F., “Hyperspectral imaging based method for 

rapid detection of microplastics in the intestinal tracts of fish,” Environ. Sci. Technol., 53(9), 5151-5158 (2019). 

https://doi.org/10.1021/acs.est.8b07321 

[24] Chaczko, Z., Wajs-Chaczko, P., Tien, D., and Haidar, Y., “Detection of microplastics using machine learning,” 2019 

International Conference on Machine Learning and Cybernetics (ICMLC), Kobe, Japan, 1-8 (2019). 
doi:10.1109/ICMLC48188.2019.8949221 

[25] Surface Optics Corporation, SOC 710 Series Hyperspectral Imaging Systems. 

https://surfaceoptics.com/products/hyperspectral-imaging/soc710-portable-hyperspectral-camera/  

(last accessed: 07/31/2020). 

[26] Cope Plastics, Inc., Engineering materials, Products and applications guide, updated January 2018. 

https://pdf4pro.com/cdn/products-amp-applications-guide-cope-plastics-220784.pdf 

[27] Professional Plastics, Inc., Acronyms for Plastics – (abbreviations).  

https://www.professionalplastics.com/ACRONYMS (last accessed: 7/22/2020). 

[28] Mehrubeoglu, M., Zemlan, M. and Henry, S, “Hyperspectral imaging for differentiation of foreign materials from 

pinto beans,” Proc. SPIE Optics + Photonics Conf., Optical Engineering + Applications, San Diego, CA, vol. 9611, 

Paper 96110A (2015). https://doi.org/10.1117/12.2207797 

 

Proc. of SPIE Vol. 11504  115040G-11
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Aug 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


