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ABSTRACT  

Plastics have long been receiving attention due to their abundance in daily use, as well as their loss to the environment as 

debris. Plastic pollution is widely accepted as an environmental crisis, particularly in marine environments as millions of 
tons of plastics enter the oceans annually. Although some macro plastics can be determined using visible-range or VNIR 

hyperspectral imaging, microplastics as well as those that are colorless or have similar pigmentation are difficult to 
differentiate in the visible spectral regions. SWIR or short-wave infrared hyperspectral imaging offers a solution for 
plastics detection in the near infrared spectrum. This study builds on recent work for detection and identification of plastics 

using classical feature extraction techniques and spectral indices. Here, we apply least squares analysis borrowed from 
linear spectral unmixing methods for classification of plastics from SWIR hyperspectral data. In this research, we compare 
the results of the two approaches. The two methods produce similar results even though the first approach only utilizes a 

limited number of features and the second approach makes use of the entire spectral bands represented in each scene pixel.  

Keywords: SWIR hyperspectral imaging, SWIR imaging spectroscopy, plastic debris, least squares analysis, spectral 
similarity, hyperspectral classification, semantic segmentation 
 

1. INTRODUCTION  

The detection and classification of plastics requires technologies and methods that are capable of discriminating features 
that appear similar to the naked eye. This is particularly true when the target at hand is of the same color or color free 

(clear). Hyperspectral imaging in the short-wave infrared (SWIR) region provides such a solution for the differentiation 
and classification of plastic materials. SWIR hyperspectral imaging allows spatial information at the same time when 

capturing spectral signatures of the materials in the scene, providing pixel-by-pixel mapping based on the spectral signature 
at each pixel. SWIR Hyperspectral imaging of thirteen plastic samples in the range 900-1700 nm was described in our 
recent publication1. Classical feature extraction methods and four selected spectral indices in the form of band ratios were 

used as features. The extracted features were combined with minimum Euclidean distance measure to classify a variety of 
plastic materials and perform semantic segmentation of the test scene1. In this paper, we extend the classification method 
using least squares analysis borrowed from linear unmixing model to identify plastics based on the identified highest 

abundance. 

1.1 Plastic Pollutants in the Environment 

Plastic continues to be an ongoing concern for environmental pollution due to its widespread use in packaging, longevity 
and durability. Commonly utilized plastics in bags, packaging and other products include: Polypropylene (PP), Low 
Density Polyethylene (LDPE), High Density Polyethylene (HDPE) polyethylene terephthalate (PET), Polyvinyl Chloride 

(PVC), and Polystyrene (PS )2-5. Plastic pollution is widely accepted as an environmental crisis, particularly in marine 
environments, as millions of tons of plastics enter the oceans annually. Although some macro plastics can be determined 
using visible-range or VNIR hyperspectral imaging, microplastics as well as those that are colorless or have similar 

pigmentation are difficult to differentiate in the visible spectral regions. SWIR or short-wave infrared hyperspectral 



 
 

 

 

imaging offers a solution for plastics detection in the near infrared spectrum. Serranti et al.6 and Hibbitts et al.7 for instance 

performed studies on identifying plastics in hyperspectral images. 

1.2 Hyperspectral Imaging for Characterization of Plastics 

Identification of plastic in images will aid in the collection and recycling of plastics found in the environment. The observed 
spectrum for a pixel in a hyperspectral image will be a mixture or combination of various spectral signatures observed at 

the pixel location in the image. The spectral unmixing problem has garnered much interest in remote sensing as well as  
other imaging applications. Spectral unmixing aids in the determination of what is represented in the image at a  particular 

pixel location by its unmixed spectral signatues8-15. Marinoni, Plaza and Gamba8 developed synthetic data sets to test the 
efficacy of a fully constrained least squares (FCLS) approach to unmix spectral content in a pixel. The results on the 
synthetic data sets demonstrate the accuracy of the approach. Chen et al. investigated a more general spectral unmixing 

framework utilizing an objective function9. The proposed framework was tested on a simulated data set as well as Hyperion 
data, with the objective function based on one of the following four measures: Euclidean Distance based on the FCLS 
method, Spectral Angle Mapping (SAM), Spectral Correlation Measure (SCM) and Spectral Information Divergence 

(SID). In their research, the SCM, SID and SAM measure-based methods performed better than the Euclidean distance 
based one for the tested data sets. Kwan et al. studied the use of Nonnegatively Constrained Least Squares (NCLS) as well 

as the Orthogonal Subspace Projection (OSP) method for determining the composition of a mixture of biological and 
chemical compounds10. The NCLS performed better than the OSP on the tested data as it produced more realistic 
abundance values. Ibarrola-Ulzurrun et al.14 studied the FCLS, scaled constrained least squares unmixing (SCLSU), 

Extended linear mixing model (ELMM) and Robust ELMM (RELMM) methods for spectral unmixing for images from 
Teide National Park. 
 

SWIR hyperspectral images of thirteen 3" x 4" plastic samples captured individually for training are used to classify 
plastics and perform semantic segmentation in an independent scene with multiple plastic materials as part of testing. The 

images were acquired outdoors under natural light using SOC710-SWIR hyperspectral imaging system16. The purpose of 
this study is to extend four-feature minimum Euclidean distance-based classification to full spectral least squares method-
based classification, compare the results, and extend the discussion to simila rity among spectral signatures of multiple 

plastic material signatures. Section 2, Methodology, provides the list of plastic samples used in the study. SWIR 
hyperspectral imaging equipment and data analysis methods, including the least squares method (LMS) for spectral 
unmixing, are also summarized in this section. Image of the tested scene with multiple plastic samples as well as 

hyperspectral data are reproduced in Section 3. Plastic sample detection and classification results and discussion are 

presented in Section 4. Conclusions are summarized in Section 5. 

 

2. METHODOLOGY 

Table 1 lists the plastic materials included in the study1. These materials were chosen for their abundance in everyday use 
as well as their contribution to plastic waste. 

 

2.1 Equipment and Collection of Hyperspectral Data Cubes 

The equipment and data acquisition were described in detail in Mehrubeoglu et al.1 Here we provide a short overview for 
completeness: All hyperspectral data cubes were acquired using the SWIR hyperspectral imaging system (SOC710-SWIR, 

Surface Optics, San Diego, CA)16. The system had a pixel dynamic range of 12 bits, and span a spectral range from 900 
to 1700 nm. 696 samples and 512 lines formed the 2D scene, with 288 image frames, each frame representing a spectral 

band. A high-quality gray panel was used as a reference panel to compute modified reflectance, RM, as follows: 

RM(x,y,𝜆) = Ii(x,y,𝜆) /Ig(𝜆),                                                                     (1) 

where (x,y) is the index to the 2D spatial location in each image frame, 𝜆 represents spectral band, or frame number 

associated with the spectral band, and Ii(x,y,𝜆) refers to the observed or measured value at the hyperspectral image voxel, 
Ig(𝜆) is computed as the spatial average of observed values for the gray panel at spectral band 𝜆. RM was used for feature 
extraction with selected wave bands (method 1) and as full-length reflectance spectra with all bands RM(x,y) (method 2) in 

classification and semantic segmentation. 



 
 

 

 

Table 1. Plastic materials2,3 investigated using SOC710-SWIR HSI due to their abundant use and contribution to plastic 

waste4-6
 in alphabetical order (recreated from Mehrubeoglu et al.1) 

SAMPLE 
MATERIAL ACRONYM 

VISIBLE 

COLOR 

1 High-Density Polyethylene HDPE Black 

2 High-Density Polyethylene HDPE White 

3 High-Temperature 

Chlorinated Polyvinyl 

Chloride 

High-Temperature 

CPVC 
Gray 

4 Kydex Acrylic  

Polyvinyl Chloride 
Kydex Acrylic PVC Gray 

5 Low-Density Polyethylene LDPE White 

6 Polycarbonate PC Clear 

7 Polyetheretherketone PEEK Tan 

8 Polyethylene Terephthalate 

Modified with CHDM 
PETG Clear 

9 Polyester [unspecified] Polyester White 

10 Polypropylene PP White 

11 Polystyrene PS Amber 

12 Polystyrene PS White 

13 Polyvinyl Chloride PVC Black 

 

2.2 Material Classification, and Semantic Segmentation 

In the previously-described1 method 1, four spectral indices from eight spectral bands were selected from modified 

reflectance spectra as effective features to achieve semantic segmentation of the plastic test samples. Individual plastic 
samples’ average spectral signatures were used as reference spectra to extract the four spectral indices as features. These 
features were then used as a multi-dimensional vector representing cluster centers associated with each sample. Minimum 

Euclidean distance was computed from the unlabeled tested pixel features to classify then map each pixel in the test scene. 
Pixels whose minimum distance from a cluster center exceeded a maximum threshold were not labeled as one of the plastic 

samples, but identified otherwise.  

2.3 Linear Mixing Model and Least Squares Method 

In this paper, we describe method 2 for mapping pixels to labeled plastic materials: Utilizing the Linear Mixing Model 

(LMM) to represent the observed spectrum (mixed spectrum with noise), 𝑺𝑻, for a  2D spatial scene pixel in the 

hyperspectral data cube, one can define the following:9-11, 13-14 

   𝑺𝑻 = ∑ 𝑎𝑗𝑺𝒋

𝑐

𝑗=1
+ 𝑬,                                                                          (2) 

where c is the total number of classes (c = 13 in this research since there are 13 different plastics investigated), 𝑺𝒋 is the 

spectrum for the j
th
 plastic sample (pure spectrum) and aj the abundances for each 𝑺𝒋. Noise or error, E, associated with 

this approximation for the observed or mixed spectrum is assumed in this model. In this research, a constraint on the 

abundance values dictates that the sum of the abundance values, aj, should be 1.  The abundance vector is defined as             

a = [𝑎1 𝑎2…  𝑎𝑗]. In this study, since the abundance values, aj, represent real values, the percentage of the pure spectrum, 

Sj, in the observed pixel spectrum, ST, the abundance values are positive and should sum to 1 for the c values of aj in the 

abundance vector a as shown in Eq. (3).9, 11, 13 

∑ 𝑎𝑗
𝒄

𝒋=𝟏
 = 1                                                                              (3) 

Thirteen plastics, c=13 and their corresponding pure spectra are utilized in this research. Based on the Linear Mixing 

Model, the abundance values can be adapted to minimize the cost function, f(a), by using the Least Squares Method as in 

Eq. (4). 9-11, 14 With the abundance vector constraint, this is known as the fully constrained least squares (FCLS). 



 
 

 

 

f(a) =  𝐦𝐢𝐧  
𝟏

𝟐
𝒂    

‖𝑺𝑻 − ∑ 𝑎𝑗𝑺𝒋

𝒄

𝒋=𝟏
‖

𝟐

,                                               (4) 

subject to aj  ≥  0, and the constraint of Eq. (3). 

Minimizing the cost function will minimize the error in the linear mixing model approximation, for the observed spectrum, 
ST. After cost function minimization, a higher abundance value, aj, for a given plastic spectrum, Sj, implies that the 
observed pixel spectrum has more spectral contribution from plastic j’s spectrum, Sj. In this work, the highest abundance 

plastic is used to label the observed spectrum, that is, the unknown pixel spectrum.  

 

3. DATA 

Figure 1 shows the RGB color image of the test scene with plastic labels and sample numbers from Table 1. For testing and 

mapping the same scene with multiple plastics was used when acquiring the SWIR hyperspectral images. 

 

 

Figure 1. RGB color image of tested plastic samples . This image also represents the test scene which is also acquired using SWIR 

HSI system. (PE: Polyethylene - not available during training) 

 
Average modified reflectance spectra for plastic samples are reproduced in Figure 2 for reference1. Each spectrum 
represents the average of 500 plastic material spectral signatures from thirteen samples. We note that some modified 

reflectance spectral values are greater than one, since the reference panel was gray and not white. Based on the average 
spectra, in method 1, four band ratios identified as features included: (1) ratio1 = 985:1041, (2) ratio2 = 1139:1223,               
(3) ratio3 = 1419:1461, and  (4) ratio4 = 1545:1670. 
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Figure 2. Average modified reflectance spectra1 used as labeled spectra for LSM as reference. 

 

4. RESULTS AND DISCUSSION 

 
Figure 3(a) shows the RGB color image of the scene for comparison. In Figure 3(b) a single hyperspectral image frame 
representing the test scene and obtained from the hyperspectral data cube is shown. This image shows fourteen plastic 

samples overlaid with true sample numbers from Table 1. It is note that Polyethylene (PE) included in the test scene was 
not available as one of the ground truth samples, therefore it did not have a true reference among the tested samples. In 
addition, there were two independent samples of PVC black. Finally, PS amber was not in the test scene although it was 

included among the pure spectra. Figure 3(c) displays the classification and mapping results based on method 1: minimum 

Euclidean distance.  Figure 3(d) depicts the same using method 2: least squares method.  

As can be seen in Figure 3 and summarized in Table 2, both classification methods produced comparable results, fully or 
partially mapping 10 (minimum Euclidean distance) and 11 (LSM) out of the 14 samples in the test scene. Both methods 

identified HDPE black the same as PVC black. Upon reviewing the modified reflectance spectra for these two materials 
in Figure 2, it is clear that these two materials display very similar spectral signatures, which could explain the difficulty 
in distinguishing these materials. Eight of the plastic samples (2, 3, 4, 5, 7, 8, 13(a), 13(b)). Sample 9 was correctly 

identified by minimum Euclidean distance method. Polyethylene, a plastic material that was not in the list of pure spectra 
of Figure 2, was identified uniquely, though not matched to one of the ground truth spectra using the same classifier. 

Sample 10 was incorrectly classified the same as sample 5, and sample 12 was incorrectly classified the same as sample 
9. Sample 6 was incorrectly identified as sample 6. (Fig 3(b) and 3(c)). On the other hand, using LSM, samples 6, 10 and 
12 were correctly classified, whereas sample 9 was incorrectly identified as sample 10. Polyethylene sample was identified 

as sample 5. 

In an effort to explore similarities among spectra based on determined abundances through the LSM, Figure 4 was 
generated. In this figure, the matrix shows the abundance of pure spectra representing plastic materials in the tested 
spectrum from each spatial pixel location. It is interesting to note the abundance values along the diagonal, which are used 

to label the test pixel’s spectrum, and the values off diagonal suggest similarities with other pure spectra.  



 
 

 

 

 
 

 

 

Figure 3. Semantic segmentation results. (a) RGB color image of the test scene; (b) single frame (band) image of the scene from the 

SWIR hyperspectral data cube; (c) classification results from method 1: minimum Euclidean distance; (d) classification results from 

method 2: LSM      
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Table 2. Analysis of plastics classification results from Figure 3 showing plastic materials  and classification success using minimum 

Euclidean distance measure and LSM. 

SAMPLE 
PLASTIC 

MATERIAL 

Successful Classification 

Yes: √√       Partial: √       No: X 

Minimum 
Euclidean 

Distance  

Least 
Squares 

Method 

1 
HDPE  

black 

X  

(identified as 

PVC black) 

X 

(identified as 

PVC black) 

2 
HDPE  

white 
√√ √√ 

3 

High-Temperature 

CPVC  

gray 

√  

(partially 

identified) 

√ 

(partially 

Identified) 

4 
Kydex Acrylic PVC 

gray 
√√ √√ 

5 
LDPE 

white 
√√  √√  

6 
PC 

clear 

X 

(identified as 
PETG clear) 

√√ 

7 
PEEK 

tan 
√√ √√ 

8 
PETG 
clear 

√√ √√ 

9 
Polyester 

white 
√√ 

X 

(identified as 

PP white) 

10 
PP 

white 

X 

(identified as 

LDPE white) 

√√ 

11 
PS 

amber 

N/A 

(not in the  

test scene) 

N/A 

(not in the 

test scene) 

12 
PS 

white 

X 

(identified as 

Polyester white) 

√√ 

13 (a) 
PVC 

black (a) 
√√ √√ 

13 (b) 
PVC 

black (b) 
√√ √√ 

Untrained 
Polyethylene (PE) 

white 

√ 

(uniquely 

identified but not 

classified) 

X 

(identified as 

LDPE white) 

 

 

 



 
 

 

 

 

Figure 4. LSM results of abundances. Each column represents the average abundance of 500 pure spectra for samples 1 through 13, as 

indicated in the labeling below the matrix. The abundances in the diagonal represents the maximum abundances that w ere used to label 

a pixel. Off-diagonal values show the abundance of other materials along the same column, suggesting similarities to labeled test spectra 

identified as the maximum abundance in the diagonal. 

 

5. CONCLUSION 

Fourteen plastic samples representing thirteen different materials have been analyzed using SOC170-SWIR hyperspectral 
imaging. SWIR hyperspectral imaging has been combined with minimum Euclidean distance measure applied to four 

spectral indices selected as effective features, and least squares method (LSM) applied to the entire spectrum to classify 
the material represented in each spatial pixel. Both methods produced comparable results. Using the minimum Euclidean 
distance metric, ten out of fourteen samples in the test scene were identified correctly, whereas using LSM, 11 out of 14 

samples were successfully classified. HDPE (black) and PVC (black) samples were identified as the same material through 
both classifiers. An average abundance matrix was generated based on the abundance computations from 500 pure spectra 

representing thirteen plastic samples each of which was compared to the average labeled spectra shown in Figure 2 using 
the linear unmixing model through LSM. Some pure material spectra were identified to have abundances of other pure 

spectra, suggesting similarities in the tested spectra in the least squares sense, and require further investigation.  

Overall, the results of the two simple classification methods for semantic segmentation of plastics show that the SWIR 

hyperspectral imaging is capable of differentiating different plastic materials. More advanced classifiers are warranted for 

improved accuracy in classification results and is the topic of ongoing research.  
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